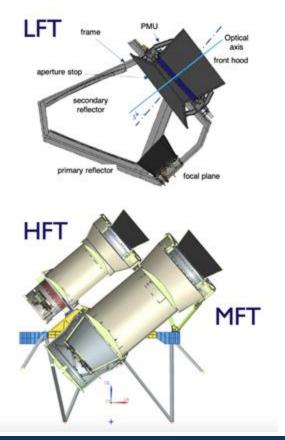
LiteBIRD instrument update

Francesco Piacentini - Sapienza University of Rome for the LiteBIRD collaboration

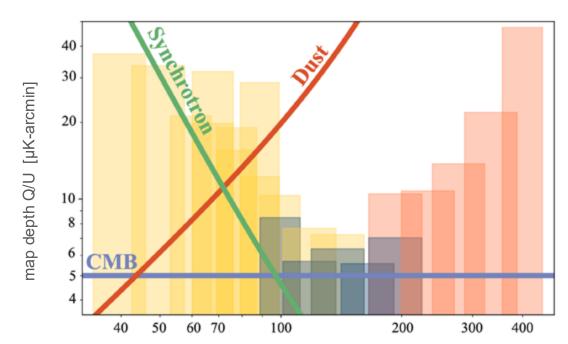
CMB@60, Accademia delle Scienze, Torino, May 28-30, 2025



• LiteBIRD

- Lite Satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection
- Space mission for CMB polarization at large angular scales
- Targeting $\delta r < 0.001$

Baseline design (up to 2024)



- 3 telescopes: LFT, MFT, HFT
- 40 402 GHz range (frequency centers)
 - TES detectors at 100mK
- 3 cryogenic rotating Half Wave Plates for polarization modulation
- LFT (JAXA)
 - 40 140 GHz
 - reflective optics
 - sapphire-based cryogenically rotating HWP
- M/HFT (EU with CNES leadership)
 - 100-195 GHz / 195-402 GHz
 - refractive optics
 - metamaterial-based cryogenically rotating HWPs

Baseline sensitivity and bands distribution

- Projected polarization sensitivities (map depths) for a 3-year full-sky survey
- Best: 4.6 µK·arcmin @ 119 GHz
- Combined sensitivity to CMB polarization: 2.2 μK·arcmin
- Angular resolution ~0.5 degrees
- Aiming to the largest angular scales for measurement of recombination and reionization B-modes peaks

freq (GHz)

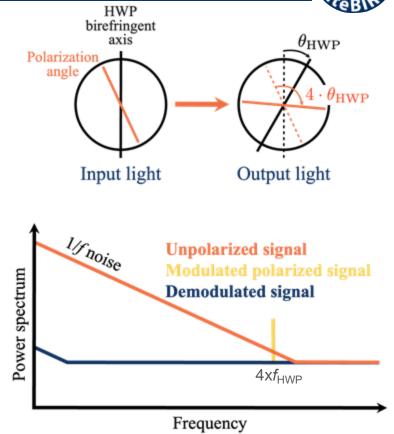
Polarization Modulation Unit

Polarization is modulated by a cryogenic rotating Half-Wave Plate (HWP) in combination with polarization sensitive detectors

When the HWP rotates, the polarized fraction rotates at 4xHWP rotation frequency: ~1 Hz \rightarrow ~4 Hz

The **polarized fraction is modulated**/demodulated at 4xf_{HWP}

This allows extraction of the polarization fraction

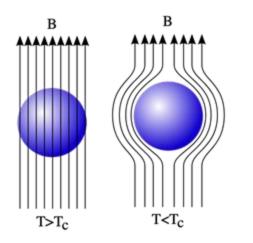

It reduces the impact of 1/f noise (modulation/demodulation)

It reduces systematic effects

- No need of combination of different detectors to solve polarization (as it was for Planck)
- No problem with differential properties of pairs of detectors, such as gain/beam/bandpass/... mismatches
- Most of HWP induced systematic effects appear at 2x f_{HWP}

The combination of HWP rotation and satellite scanning moves the polarization signal to sidebands of $4xf_{HWP}$

- Systematic effects at $4x f_{HWP}$ can be notch filtered



Polarization Modulation Unit - cryogenic rotator

FreeBIRD

Meissner effect on superconductor

Tc = 93K

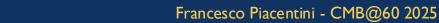
YBCO - Yttrium Barium Copper Oxide superconductor

SmCo magnet

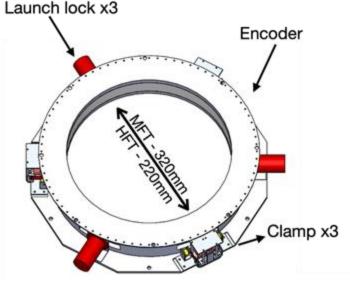
continuously rotating for mission lifetime (3 yrs)

- rotation speed: 50-100 rpm -

32 high purity copper coils (x2)


Superconductor

(YBCO)


LiteBIRD

- heat load on 5K stage ~4mW -
- encoder accuracy < 1 arcmin

Fabio Columbro, Silvia Masi, P. de Bernardis, Sapienza University


Polarization Modulation Unit - cryogenic rotator

Polarization Modulation Unit - cryogenic rotator

Fabio Columbro, Silvia Masi, P. de Bernardis, Sapienza University

LiteBIRD is facing a REFORMATION PLAN 2024-2025

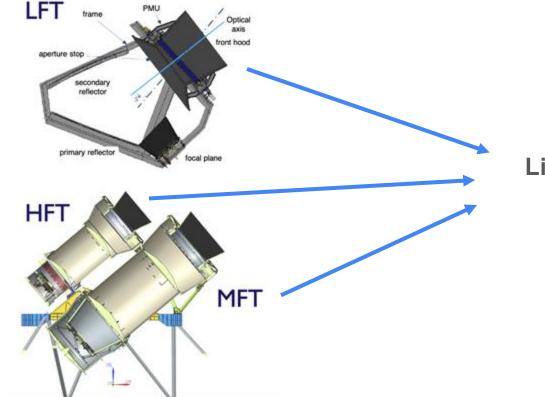
LiteBIRD project status - reformation plan

- 2024-08: KEK decided to step down from his leading role in the procurement of the TES detectors
- 2024-09-26: ISAS/JAXA KDP#1 (Key Decision Point 1). Decision:
 - The LiteBIRD collaboration will conduct investigating **reformation plans** for about one year.
 - Then, ISAS/JAXA will judge the continuation of the project. (~Late 2025)
- **2024-10** LiteBIRD PI has changed to Tomotake Matsumura (Kavli IPMU, Tokyo University).

 \rightarrow We are investigating **alternative procurement plans** to replace KEK's technological contributions.

 \rightarrow The international team is actively conducting **reformation investigations** to further optimize and establish a more robust mission.

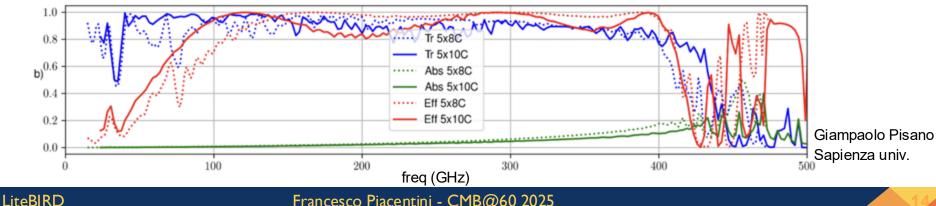
LiteBIRD reformation plan - main points


- Rebuilding the detector procurement plan and coordinating with new partners is the primary purpose
- Revisit the overall mission aspects, to enhance the robustness, and improve the manageability of the mission, while **keeping the overall science goal**.
 - Revisit the science objectives, so that appropriate error budget and margins can be distributed to the mission instruments and the spacecraft system.
 - **Simplify** the mission configuration.
 - Simplify the cryo-chain
- We also emphasize:
 - rich sciences other than the CMB B-mode that LiteBIRD can deliver;
 - the **synergy** with the ground-based CMB data.

Science objectives

- See presentation by Tomotake Matsumura (panel 10)
 - The principal science goal remains unchanged, i.e., to verify the inflationary Universe.
 - The sensitivity to the tensor-to-scalar ratio *r* will be maintained at a level where representative inflationary models, e.g. Starobinsky, can be tested.
 - Will revisit the error budget (statistical, foreground residuals, systematic effects, margin) keeping the science goal
 - LiteBIRD will survey the millimeter wavelength all-sky. Maps will allow to address important scientific topics other than the verification of the inflationary universe

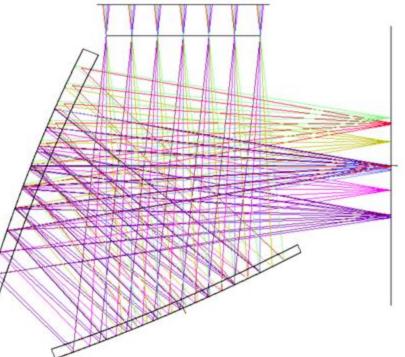
LiteBIRD reformation plan - instrument revision



LiteBIRD single telescope, single instrument

Instrument revision - new large bandwidth HWP

- A new large bandwidth HWP can achieve 10:1 frequency range: 40 400 GHz
 - it was 2.7:1 before
 - now based on 5 plates in Pancharatnam configuration
 - each plate made of 10 metamaterial mesh layers
 - Design in Sapienza University (Giampaolo Pisano)
 - Production in Cardiff University same technology as metal mesh filters
 - There is still design margin, to improve low frequency side

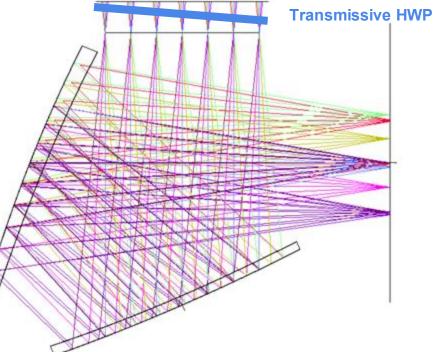

New version of Pancharatnam 5x10C

Francesco Piacentini - CMB@60 2025

Design simplification (in trade-off study) – option 1

Different instrumental configurations are currently under investigation for reaching the same scientific goals

- single reflective telescope
- without HWP
- 40 570 GHz (extended)
- fast spin rate (1 spin in 3 mins)

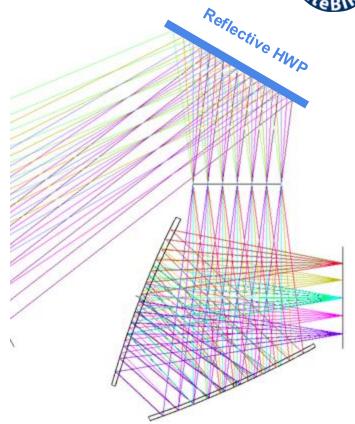


Francesco Piacentini - CMB@60 2025

Design simplification (in trade-off study) – option 2

Different instrumental configurations are currently under investigation for reaching the same scientific goals

- single reflective telescope
- 40 400 GHz (baseline)
- transmissive large-band HWP
- nominal spin rate (1 spin in 20 mins)



Design simplification (in trade-off study) – option 3

Different instrumental configurations are currently under investigation for reaching the same scientific goals

- single reflective telescope
- 40 400 GHz (baseline)
- reflective ultra large-band HWP
 - 13:1 frequency coverage
 - higher modulation efficiency
 - can accommodate only a smaller focal plane
 - similar mapping speed
- nominal spin rate (1 spin in 20 mins)

- CNES "Key Point" April 2025
 - a baseline with transmissive HWP has been proposed (no HWP as a backup)
- A plan to develop TES detectors in Europe with support by ESA D/TEC has been put in place (with contribution from Italy, UK, NL + FR, ES, CH, FI, ..)
- JAXA Key Decision Point #2 September 2025
 - JAXA to approve mission continuation
- JAXA Mission Definition Review Spring 2026
 - The collaboration must show that the mission is mature to enter in JAXA Phase A (equivalent to ESA Phase B)

Complementarity

Space based CMB observations

- Full-sky observation and sensitivity to the very low-*l*
- Wide frequency range

Ground based

- adopt cutting-edge challenging technologies to achieve the best possible performance
- sensitivity to very high-ł

technological exchange is mandatory between them, to achieve their synergy

MoU between LiteBIRD and CMB-S4 collaborations

GOAL:

- Quantify the synergy between the LiteBIRD and CMB-S4 projects based on forecasts using LiteBIRD and CMB-S4 simulations
 - impact of LiteBIRD high-frequency and low-frequency maps on CMB-S4 *r* forecasts
 - impact of CMB-S4 de-lensing information on LiteBIRD *r* forecasts

CMB B-mode – NEXT @KEK

- LiteBIRD is JAXA's mission for **precision measurement of the CMB B-mode**
- High-precision millimeter wave all-sky polarization maps allows rich science other than
 CMB B-mode
- It is the only space-based CMB observatory planned in 2030s.
- It is **currently under reformation**, until autumn 2025.
 - To rebuild the **detector procurement plan** and to coordinate with new partners.
 - To make the mission robust, feasible, and manageable, while **keeping the science targets**.
 - Not to lose the opportunity to conduct the CMB B-mode observation in space in 2030s

