

LIGHT RELICS

MASSIMILIANO LATTANZI INFN, sezione di Ferrara CMB @60 Panel 9 – Fundamental physics and anomalies Torino, May 30th, 2025

LIGHT RELICS

for our (i.e. CMB) purpose, sub-eV-mass particles produced in the early Universe with weak or weaker-than-weak interactions with the standard model sector

Examples: *active neutrinos*, sterile neutrinos, axionlike particles (ALPs), dark photons, ... (all of them in some part of their parameter space)

* See also: dark radiation, FIMPs, WISPs, hot dark matter....

ACTIVE NEUTRINOS

CMB+BAO:

 $\Sigma m_v = m_1 + m_2 + m_3 < 0.08 - 0.12 \text{ eV}$ (95% CL)

1.5 million lightyears

M. LATTANZI

CMB@60

$$\sum m_{\nu} = 1.9 \,\mathrm{eV}$$

No neutrinos

Credit: Agarwal & Feldman

M. LATTANZI

ACTIVE NEUTRINOS

Flavour oscillation experiments

End point of tritium b-decay spectrum

 $\Sigma m_v < 1.35 \text{ eV} (\text{KATRIN})$

M. LATTANZI

ACTIVE NEUTRINOS

Tension between cosmo and osciillation data?

Planck+ACT+DESI BAO

Preference for vanishing neutrino masses

 Σm_v < 0.064 eV @95% CL

- Hinting at new physics in the neutrino sector (decay, annihilation...) or elsewhere?
- Bound weakens including dynamical DE

DESI Collaboration, arXiv:2503.14744

EFFECTIVE NUMBER OF NEUTRINOS

$$ho_r \equiv \left[1 + N_{ ext{eff}} imes rac{7}{8} imes \left(rac{4}{11}
ight)^{4/3}
ight]
ho_{
ho}$$

Theoretical prediction $N_{eff} = 3.0440 \pm 0.0002$ (3 SM neutrinos)

is a probe for

- Additional light species
- Nonstandard thermal history
- physics of neutrino decoupling
- lepton asymmetry
- • • •

M. LATTANZI

EFFECTIVE NUMBER OF NEUTRINOS

Currently measured with ~5% precision:

Planck 2018 N_{eff} = 2.89+/- 0.19

Planck+ACT+BAO: $N_{eff} = 2.86 +/- 0.13$

Consistent with the Standard Model prediction

EFFECTIVE NUMBER OF NEUTRINOS

Calabrese et al. (ACT coll.) 2025,

- Contribution of extra species *in thermal equilibrium* to Neff is inversely proportional to their decoupling temperature....
- ... which is in turn inversely proportional to their (effective) coupling to the SM*
- Decoupling after the QCD phase transition (T~100 MeV) is excluded by present cosmological data
- *E.g. for a four point interaction:

CMB@60

$$T_d \sim \left(\frac{1}{G_X^2 m_{\rm pl}}\right)^{1/3} \quad {\rm with} \quad G_X = \frac{g^2}{m_X^2} \underbrace{\qquad }_{\rm mediator} \mathop{\rm mass}_{\rm mass}$$

TORINO, MAY 30TH, 2025

NEUTRINO INTERACTIONS

CMB is sensitive to the collisional properties of light relics (extra power at intermediate/small scales + phase shift)

E.g. neutrino nonstandard interactions (nuNSI)

Currently no evidence for nuNSI

Calabrese et al. (ACT coll.) 2025

NEUTRINO INTERACTIONS

CMB is sensitive to the collisional properties of light relics (extra power at intermediate/small scales + phase shift) Phenomenological analysis from Montefalcone, Wallisch, Freese 2025

Also in this case, no evidence for deviation from free streaming behaviour

LITEBIRD+CMB-S4+DESI/LSST

LiteBird Collaboration, arXiv:2202.02773

M. LATTANZI

RIUNIONE DELLA CSN2

VENEZIA, 8 APRILE 2025

N_{EFF} FROM CMB-S4

VENEZIA, 8 APRILE 2025

M. LATTANZI

RIUNIONE DELLA CSN2

BEYOND THERMAL EQUILIBRIUM: FREEZE-IN

Next-gen experiments will allow to probe the nonthermal (freeze-in) regime of light relics production

Relevant e.g. for the magnetic moment of Dirac neutrinos... (Lucente, Carenza, Gerbino, Giannotti, ML, PRD 2024)

BEYOND THERMAL EQUILIBRIUM: FREEZE-IN

Next-gen experiments will allow to probe the nonthermal (freeze-in) regime of light relics production

... or for B-L models

(Caloni, Stengel Gerbino, ML, arXiv: 2405.09449)

$$\mathcal{L} = g' Z'_{\mu} \sum_i \left[rac{1}{3} \left(ar{u}_i \gamma^{\mu} u_i + ar{d}_i \gamma^{\mu} d_i
ight) - ar{e}_i \gamma^{\mu} e_i - ar{
u}_{L,i} \gamma^{\mu}
u_{L,i} - ar{
u}_{R,i} \gamma^{\mu}
u_{R,i}
ight] \,,$$

LIGHT RELICS FROM NEXT-GEN EXPERIMENTS

Reaching these goals requires a precise and accurate measurement of both **large** and **small** scale CMB

- Small scales:
 - Most of the N_{eff} signal is in the damping tail
 - Lensing reconstruction needed to get the masses
 - useful to probe the collisional properties
 - Foreground residuals and beam systematics to be kept under control
 - Theoretical "systematics": impact of nonlinearities on CMB lensing
- Large scales:
 - A CV-limited measurement of the optical depth is needed to reach the lowest possible sensitivity on M_{ν} .
 - Large-scale foregrounds and instrumental systematics to be kept under control

- What is needed for a reliable measurement of neutrino mass?
- How to deal with model dependency?
- What if tension with lab persists? How to interpret/explain it?
- How to distinguish possible interpretations of a measurement of ∆N_{eff} ≠0? (e.g., extra species vs nonstandard neutrino decoupling)?
- Can we go beyond N_{eff}? E.g. how sensitive are future experiment to neutrino spectral distortions, or to highly nonthermal light relics?