Exploring new horizons with CMB* spectral distortions

THE

ROYAL

MANCHESTER 1824

The University of Manchester

Jens Chluba CMB@60 May 30th 2025

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

 $T_0 = 2.725 \pm 0.001 \,\mathrm{K}$ $|y| \le 1.5 \times 10^{-5}$ $|\mu| \le 9 \times 10^{-5}$

Mather et al., 1994, ApJ, 420, 439 Fixsen et al., 1996, ApJ, 473, 576 Fixsen, 2003, ApJ, 594, 67 Fixsen, 2009, ApJ, 707, 916

SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND

Blackbody spectrum to very high precision

Standard types of primordial CMB distortions

Compton y-distortion

Sunyaev & Zeldovich, 1980, ARAA, 18, 537

- also known from thSZ effect
- up-scattering of CMB photon
- important at late times (z<50000)
- scattering `inefficient'

Chemical potential μ -distortion

Sunyaev & Zeldovich, 1970, ApSS, 2, 66

- important at early times (z>50000)
- scattering `very efficient'

Guaranteed distortion signals in ΛCDM

New tests of inflation and particle/dark matter physics

Signals from the reionization and recombination eras

Huge discovery potential

Complementarity and synergy with CMB anisotropy studies

Zeldovich & Sunyaev, 1969 Sunyaev & Zeldovich, 1970 Danese & de Zotti, 1982 Burigana, Danese & de Zotti, 1991 Hu & Silk, 1993; JC et al. 1909.01593

Average ACDM spectral distortions

Guaranteed distortion signals in ΛCDM

New tests of inflation and particle/dark matter physics

Signals from the reionization and recombination eras

Huge discovery potential

Complementarity and synergy with CMB anisotropy studies

Zeldovich & Sunyaev, 1969 Sunyaev & Zeldovich, 1970 Danese & de Zotti, 1982 Burigana, Danese & de Zotti, 1991 Hu & Silk, 1993; JC et al. 1909.01593

Zeldovich & Sunyaev, 1969 Sunyaev & Zeldovich, 1970 Danese & de Zotti, 1982 Burigana, Danese & de Zotti, 1991 Hu & Silk, 1993; JC et al. 1909.01593

Zeldovich & Sunyaev, 1969 Sunyaev & Zeldovich, 1970 Danese & de Zotti, 1982 Burigana, Danese & de Zotti, 1991 Hu & Silk, 1993; JC et al. 1909.01593

COBE/FIRAS Mather & Fixsen

1989

Nevertheless, the cross-polarization introduced by the optical system remains very low degraded with respect to the optimal configuration, according to GRASP results. In the same

COBE/FIRAS Mather & Fixsen

1989

Nevertheless, the cross-polarization introduced by the optical system remains very low degraded with respect to the optimal configuration, according to GRASP results. In the sa

COBE/FIRAS Mather & Fixsen

1989

 $\langle | \rangle$

degraded with respect to the optimal configuration, according to GRASP results. In the sa

COBE/FIRAS Mather & Fixsen

n does not satisfy the

viation with respect in

ced by the optical system remains very low ration, according to GRASP results. In the sa

Browne & Wilkinson

1989

COBE/FIRAS Mather & Fixsen

1989

212

degraded with respect to the optimal configuration, according to GRASP results. In the sa

Cosmological data seems to be preferring early recombination scenarios!

55

60

65

70

 H_0

80

75

Model-independent reconstruction of free electron fraction using Emulators

Lynch, Knox & JC, ArXiv:2406.10202 Lynch, Knox & JC, ArXiv:2404.05715

Calabrese et al., ArXiv:2503.14454

Calabrese et al., ArXiv:2503.14454

Calabrese et al., ArXiv:2503.14454

Uniform medium

Uniform medium

 $\Gamma = \sigma_{\rm T} N_{\rm e} a$

Uniform medium

Clumpy medium

 $\Gamma = \sigma_{\rm T} N_{\rm e} a$

Uniform medium

 $\Gamma_1 < \Gamma_2$

 $\Gamma = \sigma_{\rm T} N_{\rm e} a$

Clumpy medium

Uniform medium

 τ_c $\Gamma_1 < \Gamma_2$

 $\Gamma = \sigma_{\rm T} N_{\rm e} a$

Clumpy medium

Uniform medium

 τ_{c} $\Gamma_{1} < \Gamma_{2}$

 $\Gamma = \sigma_{\rm T} N_{\rm P} a$

 $\Gamma \approx \sigma_{\rm T} N_{\rm e} a [1 - \zeta_{\rm e}]$ $\zeta_{\rm e} = \tau_{\rm c} \sigma_{\rm e}^2$

Clumpy medium

Uniform medium

 τ_c $\Gamma_1 < \Gamma_2$

$$\Gamma = \sigma_{\rm T} N_{\rm e} a \qquad \qquad \Gamma \approx \sigma_{\rm T} \bar{N}_{\rm e} a [1 - \zeta_{\rm e}]$$
Average
recombination
history
$$\zeta_{\rm e} = \tau_{\rm c} \sigma_{\rm e}^2$$

Clumpy medium

Uniform medium

 τ_{c} $\Gamma_{1} < \Gamma_{2}$

Clumpy medium

Uniform medium

JC,

 τ_{c} $\Gamma_{1} < \Gamma_{2}$

$$\Gamma = \sigma_{\rm T} N_{\rm e} a \qquad \qquad \Gamma \approx \sigma_{\rm T} \bar{N}_{\rm e} a [1 - \zeta_{\rm e}]$$
Average
recombination
history
$$\zeta_{\rm e} = \tau_{\rm c} \sigma_{\rm e}^{2}$$
Optical depth
across coherence
length
Electron variance

Clumpy medium

Cosmological Time in Years

Testing the origin of the Hubble tension with the CRR

- Hubble tension persists... New Physics??
- H₀ Olympics identified EDE, Primordial Magnetic fields and varying m_e models as best solutions!
- These should affect the CRR!

Hart & JC, 2022, ArXiv:2209.12290

'From Planck to the future' - Ferrara 2022

Courtesy: Reno Mandolesi

'From Planck to the future' - Ferrara 2022

Courtesy: Reno Mandolesi

'From Planck to the future' - Ferrara 2022

Courtesy: Reno Mandolesi

AKADEMIA KOPERNIKAŃSKA

WORLD CONGRESS

sion

Panel discussion: Exploration of the Cosmic Microwave Background - the Future

Prof. John Carlstrom (University of Chicago) Prof. Masashi Hazumi (High Energy Accelerator Research Organization - KEK, and Kavli IPMU, Tokyo University) Prof. Lyman Page (Princeton University) Dr. Charles Lawrence (Jet Propulsion Laboratory, Pasadena) of. Rafael Rebolo (Institute Strophysics of the Canary Islands) f. Jens Chluba (Universit

Small-scale power and PBH link

A CMB spectrometer could rule out SIGWs as cause for large-scale *B*-modes

The ARCADE radio excess

- Synchrotron-like signal first seen by ARCADE-2 (Fixsen et al. 2011)
- Confirmed by LWA (Dowel & Taylor, 2018)
- Isotropic on the sky
- Still unexplained (discussions in Singal et al. 2018 & Singal et al. 2023)

The ARCADE radio excess

- Synchrotron-like signal first seen by ARCADE-2 (Fixsen et al. 2011)
- Confirmed by LWA (Dowel & Taylor, 2018)
- Isotropic on the sky
- Still unexplained (discussions in Singal et al. 2018 & Singal et al. 2023)

Is this an early (*z*>10?) radio background possibly from accreting black holes or new physics?

Cosmic String solution to ARCADE excess?

- Performed detailed modeling of distortions from Cosmic String network
- Tightly constrained by CMB anisotropies and low frequency radio data

- Soft photon heating highly relevant to 21 cm prediction (Acharya, Cyr & JC, 2022; Cyr, Acharya & JC, 2024)
- Intriguing solution to the RSB

Cosmic String solution to ARCADE excess?

- Performed detailed modeling of distortions from Cosmic String network
- Tightly constrained by CMB anisotropies and low frequency radio data

- Soft photon heating highly relevant to 21 cm prediction (Acharya, Cyr & JC, 2022; Cyr, Acharya & JC, 2024)
- Intriguing solution to the RSB

CMB spectrometers could test the origin of the RSB!

Cyr, Acharya & JC, 2023, ArXiv:2305.09816 Cyr, JC & Acharya, 2023, ArXiv:2308.03512

Revised Constraints on Dark Photons

JC, Cyr & Johnson ArXiv:2409.12115

COBE/FIRAS constraints still competitive

Revised Constraints on Axions

Cyr, JC & Manoj ArXiv:2411.13701

Significant uncertainties from B field modelling

CMB power spectra for decaying particles

- New way to constrain these scenarios
- Anisotropic heating is important!
- Degeneracy between lifetime and abundance can in principle be broken by ℓ -dependence

Kite, Ravenni & JC, 2022, papers III, ArXiv:2212.02817

CMB power spectra for decaying particles

- $\Gamma_{\rm x} = 10^{-8} \, {\rm s}^{-1}$ --- $\Gamma_{\rm x} = 10^{-12} \, {\rm s}^{-1}$ --- $\propto \mathcal{D}_{\ell}^{\Theta\Theta}$

- New way to constrain these scenarios
- Anisotropic heating is important!
- Degeneracy between lifetime and abundance can in principle be broken by ℓ-dependence

Can be constrainted with CMB imagers like Planck, Litebird, SO, CMB-S4 & PICO!

Kite, Ravenni & JC, 2022, papers III, ArXiv:2212.02817

SKA as a CMB experiment

- Single dish mode is enough for µ-T constraints
- Low frequency foreground monitor

- Constraints on small scales
- SKA+Litebird equivalent to PICO in terms of μ-T
- SKA could even do Bmodes...

Zegeye et al., ArXiv:2406.04326

SKA as a CMB experiment

- Single dish mode is enough for µ-T constraints
- Low frequency foreground monitor

- Constraints on small scales
- SKA+Litebird equivalent to PICO in terms of μ-T
- SKA could even do Bmodes...

Detailed study with realistic foregrounds and systematics is required!

Zegeye et al., ArXiv:2406.04326