Lensing as a foreground and cosmological probe

Anthony Challinor KICC, IoA & DAMTP University of Cambridge

Lensing as a foreground and cosmological probe

Anthony Challinor KICC, IoA & DAMTP University of Cambridge

Entering adulthood: CMB lensing@18

Smith+ 2007

Qu+ 2015

CMB lensing by LSS

......

CMB lensing: a large-scale, high-redshift probe of structure

Preston+ 2023

CMB lensing: robust probe of mostly linear structure

$$\phi(\hat{\boldsymbol{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} (\Phi + \Psi)(\chi \hat{\boldsymbol{n}}; \eta_0 - \chi)$$

- Redshift of source plane known
- Statistics of fluctuations in source plane well understood
- High-z lenses and relatively large scales

 10^{4}

CMB lensing: robust probe of mostly linear structure

 10^{4}

$$\phi(\hat{\boldsymbol{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} (\Phi + \Psi)(\chi \hat{\boldsymbol{n}}; \eta_0 - \chi)$$

- Redshift of source plane known
- Statistics of fluctuations in source plane well understood
- High-z lenses and relatively large scales
 - Modest non-linear corrections

CMB lensing: robust probe of mostly linear structure

 10^{4}

$$\phi(\hat{\boldsymbol{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} (\Phi + \Psi)(\chi \hat{\boldsymbol{n}}; \eta_0 - \chi)$$

- Redshift of source plane known
- Statistics of fluctuations in source plane well understood
- High-z lenses and relatively large scales
 - Modest non-linear corrections
 - Baryons negligible until CMB-S4 era

CMB lensing reconstruction

• Fixed lenses ϕ introduce anisotropic correlations in lensed CMB, e.g., for T:

$$\langle T(\boldsymbol{\ell})T(\boldsymbol{L}-\boldsymbol{\ell})\rangle_{\text{CMB}} = \underbrace{\boldsymbol{L} \cdot \left[\boldsymbol{\ell}C_{\boldsymbol{\ell}}^{TT} + (\boldsymbol{L}-\boldsymbol{\ell})C_{|\boldsymbol{L}-\boldsymbol{\ell}|}^{TT}\right]}_{W^{TT}(\boldsymbol{\ell},\boldsymbol{L})} \phi(\boldsymbol{L})$$

• Statistical (noisy) reconstruction of ϕ from quadratic combinations of CMB fields, e.g.,

$$\hat{\phi}(\boldsymbol{L}) = \frac{1}{\mathcal{R}_{L}^{TT}} \int \frac{d^{2}\boldsymbol{\ell}}{(2\pi)^{2}} W^{TT}(\boldsymbol{\ell}, \boldsymbol{L}) \bar{T}(\boldsymbol{\ell}) \bar{T}(\boldsymbol{L}-\boldsymbol{\ell})$$
Normalisation Known response to lensing Inverse-variance-filtered CMB field
$$= \left(\begin{array}{c} & & \\ & &$$

lds

Reconstructed CMB lensing maps

Planck 2018

SPT-3G – Ge+ 2024

Reconstructed lensing power spectra

Qu+ 2025

CMB-lensing-only LCDM constraints

Madhavacheril+ 2024

LCDM structure growth down to z = 0.5 - 5 for $k < 0.2 \,\mathrm{Mpc}^{-1}$ consistent with primary CMB

0.5

Cross-correlation measurements with unWISE galaxies

Farren+ 2024

Recent CMB lensing x galaxies measurements

LCDM structure growth down to $z \sim 0.2 - 1.6$ for $k < 0.2 \,\mathrm{Mpc^{-1}}$ consistent with primary CMB

Sailer+ 2025

CMB lensing power reconstruction – bias subtraction

Qu+ 2024

Mitigation for noise mis-modelling: cross-split estimator

Ground-based (ACT) noise is complicated: inhomogeneous and with anisotropic correlations

Atkins+ 2023

Split-based estimator:

Splits with independent noise

Noise sims not required to subtract bias

Can also extend to more optimal (likelihoodbased) estimators [Legrand+ in prep.]

Madhavacheril+ 2020

Extragalactic foreground mitigation

Limited frequency coverage and option of higher $\ell_{\rm max}$ for ground-based measurements makes extragalactic foreground contamination more of a concern

- Multi-frequency cleaning in one or both "legs" of QE
- Point-source and tSZ cluster subtraction and/or masking
- Bias harden to null response from Poisson-distributed objects (point-source or profile)
- Shear-only estimators removing response to isotropic foreground power
- Inter-frequency null tests

 $2\langle \hat{\phi}(c,c) \times \hat{\phi}(f,f) \rangle + \langle |\hat{\phi}(f,f)|^2 \rangle_c + \cdots$ $\hat{\phi}(f,f)\rangle + \langle |\hat{\phi}(f,f)|^2 \rangle_c + \cdots$ Foreground Secondary ry trispectrum bispectrum trum

ACT DR6 estimated foreground contamination

ACT DR6 baseline: 90+150 GHz co-add + point-source and cluster subtraction + profile hardening

 $\Delta A_{\text{lens}} = -0.31\sigma \ (TT); \qquad \Delta A_{\text{lens}} = -0.18\sigma \ (\text{MV})$

MacCrann+ 2024

Simons Observatory and beyond

- Lensing S/N > 100 (2x improvement over current)
- Percent-level constraints on $\sigma_8(z)$ in several redshift bins from lensing+LSST
- Moving towards EB dominance
- More optimal (beyond-QE) estimators

Back-up slides

B-modes from lensing

- Lensing B-mode can be accurately \bullet modelled and subtracted
- Main obstacle is **cosmic** variance from lensed B-modes
- Lensing limits

 $\sigma(r) > 5 \times 10^{-4}$

from $\ell > 30$ over 70% of sky

Current B-mode power measurements

BK 2021

B-mode delensing

$B^{\text{delens}} = B^{\text{obs}} - E^{\text{WF}} * \hat{\phi}^{\text{WF}}$

Filtered E modes

Want high-S/N E-modes and highly correlated tracer of lensing

 \hat{B}^{lens}

Hanson+ 2014

Multi-tracer delensing

Correlations with observed Planck B-modes

Around 50% reduction in lensing power with current template from ACT, unWISE, CIB template

Hertig+ in prep.

Delensing now improving $\sigma(r)$

Expt. combined Q

 $\sigma(r) = 0.024 \rightarrow \sigma(r) = 0.022$

BK+SPT 2021

Expected future improvements from delensing

- Targeting $\sigma(r) \le 0.003$ for r = 0
- 65% efficiency delensing for template from SO-LAT QE (goal noise levels, nominal survey) + CIB + LSST gold galaxy sample
- Spectral-based forecasts with goal SO-SAT noise:
 - Up to 37% reduction in $\sigma(r)$ for r = 0, depending on foreground complexity
- Greater improvements for extended SO

CMBS4

- Targeting $\sigma(r) = 5 \times 10^{-4}$ for r = 0
- Requires aggressive delensing
- Map-based simulations achieve more than 90% efficiency delensing with template from internal, iterative lens reconstruction
 - Significant improvement over 75% efficiency for QE reconstruction

