

Strategies to separate foregrounds from the CMB

Nicoletta Krachmalnicoff

CMB@60

Accademia delle Scienze di Torino 28-30 May 2025

Component Separation

Component separation is an inverse problem

The goal is to determine the sky components (all of them or only the CMB) given the multifrequency data

Component Separation

The difficulty of component separation depends on several key factors:

- **Foreground-to-signal ratio**: The relative strength of foreground emissions compared to the cosmological signal
- **Instrumental systematics:** interaction between foregrounds and instrument-related effects

- the lower foreground contamination
- than at large scales.
- foreground variation and systematic interactions

Foreground complexity: Spatial variability in spectral energy distributions (SEDs), line-of-sight mixing

Total intensity is easier to separate than E-mode polarization, and much easier than B-modes, due to

Smaller angular scales are less affected by foregrounds and systematics, making separation easier

Smaller sky patches are easier to clean than full-sky observations, due to reduced complexity of

Algorithms

Credits: Clement Leloup

Parametric:

 Assumes a physical model for foreground frequency dependence and fit for the parameters (typically with maximum likelihood estimation) to recover the mixing matrix • Results are easy to interpret

 Relatively easy to marginalize over additional parameters (e.g. systematic effects)

• Fails if foreground model is incorrect

No (or minimal) assumption on foreground SEDs,

• Different optimization principles to recover CMB,

e.g minimum variance for ILC

Robust against foreground complexity (and some)

Credits: Clement Leloup

Parametric:

 Assumes a physical model for foreground frequency dependence and fit for the parameters (typically with maximum likelihood estimation) to recover the mixing matrix • Results are easy to interpret

 Relatively easy to marginalize over additional parameters (e.g. systematic effects)

• Fails if foreground model is incorrect

No (or minimal) assumption on foreground SEDs,

• Different optimization principles to recover CMB,

e.g minimum variance for ILC

Robust against foreground complexity (and some)

The Planck experience

- The four methods show good consistency in the CMB solution for total intensity
- On Q an U maps large scale structures visibile, due to the interplay between instrumental systematic effects and the different component separation methods

Cosmology from Planck multi-frequency maps

Cross- C_{ℓ} likelihood in two different regimes: low and high- ℓ with different treatment of foreground contamination

- the power spectrum level is enough to prevent biases on cosmological parameters.
- $\ell < 30$: cleaning of foreground emission at map level is needed commander maps in TT \rightarrow commander polarization maps for EE in PR4 (NPIPE)

• $\ell \geq 30$: since foregrounds are less dominant, the inclusion of a dust template at

template fitting from 30 GHz (synchrotron) and 353 GHz (dust) for EE in PR3

Cosmology from Planck multi-frequency maps

Cross- C_{ℓ} likelihood in two different regimes: low and high- ℓ with different treatment of foreground contamination

- the power spectrum level is enough to prevent biases on cosmological parameters.
- $\ell < 30$: cleaning of foreground emission at map level is needed commander maps in TT \rightarrow commander polarization maps for EE in PR4 (NPIPE)

Planck component separated maps have been used in many other studies: lensing reconstructions, isotropy and statistics, compton-y...and to build foreground models used by the entire CMB community

• $\ell \geq 30$: since foregrounds are less dominant, the inclusion of a dust template at

template fitting from 30 GHz (synchrotron) and 353 GHz (dust) for EE in PR3

and for B-modes?

150GHz B \pm 0.3 μ K

220GHz B \pm 0.3 μ K

BICEP/Keck Collaboration 2021

- The BICEP/Keck array has currently reached the highest sensitivity to primordial B-modes
- dust emission
- But by observing $\sim 1\%$ of the sky (and at the current sensitivity) foreground treatment is still relatively easy, with marginalization over foreground parameters (for both synchrotron and dust) in a cross- C_{ℓ} likelihood
- In their field the B-mode signal is strongly dominated by the thermal

and for B-modes?

220GHz B \pm 0.3 μ K

BICEP/Keck Collaboration 2021

- The BICEP/Keck array has currently reached the highest sensitivity to primordial B-modes
- dust emission
- But by observing $\sim 1\%$ of the sky (and at the current sensitivity) foreground treatment is still relatively easy, with marginalization over foreground parameters (for both synchrotron and dust) in a cross- C_{ℓ} likelihood

 When Planck polarization full sky data are added to improve the constraints on r, modeling is not accurate anymore and PR4 commander maps are used

In their field the B-mode signal is strongly dominated by the thermal

Component separation strategies for SO-SATs

- Simons Observatory nominal telescopes (3 SATs + 1 LAT) are now all looking at the sky!
- The target is $\sigma(r=0) \leq 0.003$ with 5 years of observations on ~10% of the sky from recombination bump

Credits: Simons Observatory Collaboration

• The two middle frequency SATs (95 & 145 GHz) have ended commissioning and are now in initial science observation phase

Component separation strategies for SO-SATs

- Simons Observatory nominal telescopes (3 SATs + 1 LAT) are now all looking at the sky!
- The two middle frequency SATs (95 & 145 GHz) have ended commissioning and are now in initial science observation phase
- The target is $\sigma(r=0) \leq 0.003$ with 5 years of observations on ~10% of the sky from recombination bump

Credits: Simons Observatory Collaboration

- Cross- C_{ℓ} approach still valid, however on 10% of the sky FG complexity must be taken into account through the inclusion of moment expansion
- Map based approaches (blind and parametric) can lead to biases in the recovery of r, marginalization over FG residuals in the likelihood will be needed
- Work in progress to optimize pipelines for real data application: cut sky, frequency dependent filtering, transfer function...

Wolz et al. 2024

Component separation strategies for LiteBIRD

- LiteBIRD will target both the reionization and recombination bumps of primordial B-modes with full sky observations in 15 frequency bands, with target sensitivity $\delta_r(r=0) < 0.001$
- The collaboration is working on the optimization of several component separation methods

Map based algorithms (both blind and parametric) are currently the most advanced ones

- The major limitation for both approaches is the spatial variation of foreground properties
- Weights to combine maps and recover CMB solution are direction dependent

• Extremely challenging for component separation: large angular scales, full sky observations, interplay with systematics

- Weights can be computed independently on different super-pixels on maps
- Trade off to be considered: more patches lead to smaller bias (foreground residuals) on CMB map but higher statistical noise
- Optimal way is to define domains based on physical properties of foregrounds, but:
 - Available data can't be used as prior information (constraints on SED are typically model dependent)
 - domains need to be data driven, and tracer are different depending on component separation algorithm

Component separation strategies for LiteBIRD

Credits: Alessandro Carones, Josquin Errard and LiteBIRD collaboration

Statistical noise after component separation leading to larger variance on r posterior

Foreground residuals on CMB map can lead to bias on r posterior

- Component separation algorithms are rapidly evolving, aiming to minimize foreground residuals in cleaned CMB maps.
- In parallel, model-independent and data-driven approaches to construct FG residual templates for marginalization are also being developed.

Conclusions

- the past two decades.
- Planck demonstrated the value of developing multiple, complementary methods, with great success
- full-sky, large-scale experiments like LiteBIRD.
- The field remains highly dynamic and collaborative, with many young researchers driving recent impressive progress.
- and interplay with instrumental systematics.

Component separation has become a central focus in CMB data analysis over

• Yet, many key cosmological results still rely on simpler approaches, such as cross-spectra and marginalization over foreground parameters or templates.

The next major challenge lies in detecting primordial B-modes, especially for

Significant room remains for improving how we deal with complex foregrounds

