Low-Frequency Foregrounds

Main Research Topics, Key Goals, Experiments and Perspectives

Rafael Rebolo, IAC

1.Basic Properties of Galactic Emission Mechanisms (1–90 GHz)

Emission Type	Frequency Peak	Spectral Index (Iv)	Polarization	Origin
Synchrotron	<10 GHz	β ≈ -2.7 to -3.2	10–40%	Relativistic electrons in magnetic fields
Free-Free	Rather Flat across 1–100 GHz	β ≈ -2.1	≈ 0%	Electron-ion scattering in ionized gas
Anomalous Microwave Emission (AME)	20–40 GHz	β varies	<1%	Spinning dust grains (e.g., PAHs)

2. Polarization Experiments with Low Freq. Bands

(active in the decade 2020-30)

Name	Freq Range (GHz)	Туре	Key Focus	Freq Range (MHz)
QUIJOTE	10-40 (+ 90)	Northern sky survey, polarization	Synchrotron, AME, CMB foregrounds	
C-BASS	5	All-sky survey, polarization	Synchrotron template for CMB cleaning	
S-PASS	2.3	Southern sky survey	Galactic magnetic field and synchrotron polarization	All by the second secon
LOFAR	nan	Low-frequency array	Faraday rotation, ISM structure	30-240
Planck	30-857	CMB satellite	All-sky polarization, dust and synchrotron	
LSPE / STRIP	43,90	North sky survey (+ future south)	Focused on synchrotron foregrounds	
SKA	nan	Next-gen radio array (southern sky)	Galactic magnetism, polarization tomography	50-1500

Polarization Experiments with

low Freq. Bands (cont.)

Experiment	Freq. Range (GHz)	Location	Key Focus
SPTpol / SPT-3G	90, 150, 220	South Pole	High-resolution, B- mode cosmology
CLASS	40, 90, 150, 220	Atacama, Chile	Large-scale polarization
QUBIC	150 (90 future)	Salta, Argentina	Bolometric interferometry
BICEP / Keck / BICEP Array	30–270	South Pole	Multiband, precision B- mode search
AdvACT	28.4, 90, 150, 220,277	Atacama, Chile	Multiband precisión B-mode search
Simons Obs.	27,39,93,145,225, 280	Atacama, Chile	Multiband precisión B-mode search
LiteBIRD	40–400	Future CMB satellite @ L2	Primordial B-modes, precise foreground subtraction

Data example

Approx. 29,000 deg². About 10,000 h of observations. Sensitivities in polarization (Q,U): \sim 35-40 µK/deg \rightarrow equivalent to 2.4 µK.arcmin @ 100GHz with β =-3.

QUIJOTE vs. WMAP

QUIJOTE maps scaled to 23 GHz using β =-3.1 (for synchrotron). Same colour scale in all maps! For visualization purposes, the QUIJOTE mask is applied to WMAP 23GHz

(Rubino-Martin et al. 2023)

3. Characterization of Galactic Synchrotron Emission

- Key Goals :
 - Measure polarization fraction, spectral index, and angular power spectrum.

 - Study frequency dependence of polarization angle and depolarization.

3.1 Synchrotron Spectral Index and Polarization Fraction

Region	Spectral Index (β)	Freq Range (GHz)	Reference	Polarization Fraction (%)
High Galactic latitudes	-3.0 ± 0.1	0.4–30	Kogut et al. (2007), ApJ, 665, 355	10–20
North Galactic Spur	-2.8 ± 0.1	1–23	Gold et al. (2011), ApJS, 192, 15	20–30
Galactic plane (b <5°)	-2.7 ± 0.1	0.4–2.3	Carretti et al. (2019), MNRAS, 489, 2330	10–15
Full sky (Planck Commander)	-3.1 ± 0.1	30–70	Planck Collaboration (2016), A&A, 594, A10	10–20
Fan Region	-2.9 ± 0.1	0.6–2.3	Bernardi et al. (2009), A&A, 500, 965	30–40
Northern sky (QUIJOTE Wide Survey)	-2.90± 0.20 -3.09 ± 0.13	11–19	Rubiño-Martín et al. (2023), MNRAS, 518, 4355	10–25

3.2 Average Angular Power Spectrum of Galactic Synchrotron Emission

Multipole Range (&)	Cl∝	Reference
1–10	€^(-2.5)	Wolleben et al. (2006), A&A, 448, 411
10–100	€^(-2.8)	La Porta et al. (2008), A&A, 479, 641
100–300	€^(-3.0)	Gold et al. (2011), ApJS, 192, 15
300–600	ℓ^(-3.1)	Carretti et al. (2010), MNRAS, 405, 1670
600–1000	ℓ^(-3.3)	Planck Collaboration (2016), A&A, 594, A10

3.3 EE and BB Modes in Galactic Polarized Synchrotron Emission

- The angular power spectra of Galactic synchrotron polarization can be decomposed into:
 - EE modes: associated with ordered magnetic fields, symmetric patterns.
 - BB modes: associated with turbulent magnetic structures, asymmetric patterns.
- These components are critical foregrounds for CMB B-mode studies.
- Martire et al. (2022) present one of the most complete analyses of the angular power spectrum of polarized Galactic synchrotron emission using Planck and WMAP data. Main results:
 - EE and BB angular spectra follow power laws: α _EE = -2.95 ± 0.04, α _BB = -2.85 ± 0.14 for $30 \le \ell \le 300$
 - B/E power ratio $\approx 0.22 \pm 0.02$ (B-modes are subdominant)
 - EB cross-correlation: compatible with 0, with <1.2% limit relative to EE at 2σ
 - Frequency spectral indices: $\beta_{EE} = -3.00 \pm 0.10$, $\beta_{BB} = -3.05 \pm 0.36$
- Reference: Martire et al. (2022), A&A 660, A87 https://arxiv.org/abs/2203.06724

3.3 EE/BB Power Spectrum Measurements in Synchrotron Studies

Study	€ Range	α_EE	α_BB	BB/EE	Freq (GHz)
Martire et al. (2022)	30–300	-2.95 ± 0.04	-2.85 ± 0.14	0.22 ± 0.02	23–30
Planck Collaboration (2016)	10–600	-2.9±0.1	-2.9±0.1	0.35	30
Rubiño et al. (2023)	10-100	-2.96±0.29	-3.12±0.89	0.26 ± 0.07	11–19

3.3 Statistical Properties of Polarized Synchrotron

- Key Goals:
 - Analyze E/B asymmetry to distinguish foregrounds from B-modes.
 - Study non-Gaussianity and coherence of polarization patterns.

3.4 Frequency Dependence of Synchrotron Polarization Angle

• The polarization angle of Galactic synchrotron emission changes with frequency due to Faraday rotation:

Faraday Rotation of Polarized Emission

- • Faraday Rotation Law:
- $\theta(\lambda) = \theta_0 + RM \times \lambda^2$
- θ: observed polarization angle
- - λ : wavelength
- RM: Rotation Measure, sensitive to electron density and line-of-sight magnetic field
- • Effects:
- Strong at low frequencies (MHz–GHz): causes depolarization
- Negligible at high frequencies (>30 GHz): intrinsic polarization angle recovered
- Applications:
- Mapping Galactic magnetic fields
- - Faraday tomography (e.g. RM synthesis)
- Foreground characterization for CMB B-mode detection
- References:
- Brentjens & de Bruyn (2005), A&A 441, 1217
- Jelić et al. (2015), A&A 583, A137
- Planck Collab. XLII (2016), A&A 596, A103

4. Magnetic Field Structure of the Milky Way

- Key Goals:
 - Model the 3D structure of large-scale and turbulent magnetic fields.

Angles: Comparison to WMAP and PLANCK in high SNR regions, excluding calibrators (CRAB) and high FR regions (galactic center). E.g. the median difference MFI11GHz - LFI30: -0.5^o (error=0.6^o).

Magnetic fields lines (Rubiño-Martin et al. 2023)

5. Anomalous Microwave Emission

- Spinning dust emission is attributed to electric dipole radiation from small, rapidly rotating dust grains, such as PAHs (polycyclic aromatic hydrocarbons), in the interstellar medium.
- 1. Power Radiated by a Rotating Electric Dipole:
- $P(v) \propto \mu^2 v^2 f(v)$
- μ: electric dipole moment of the grain
- - v: rotational frequency
- - f(v): distribution function of rotation rates
- 2. Grain Rotation Rate Distribution:
- $f(v) \propto \exp[-(v v_0)^2 / 2\sigma^2]$
- - vo: peak rotation rate
- σ: dispersion due to gas-grain interactions
- 3. Emissivity (per H atom):
- $j(v) = \int n(a) P(v, a) da$
- - n(a): size distribution of dust grains
- - P(v, a): power emitted by grain of size a
- References:
- Draine & Lazarian (1998), ApJ, 508, 157
- • Ali-Haïmoud et al. (2009), MNRAS, 395, 1055

Spinning dust

Anomalous Microwave Emission

Sky Distribution and Source Selection

Cepeda-Arroita et al. lin preparation)

Typical High Latitude Source: G159.02-33.88

5.1 Polarization Measurements of Anomalous Microwave Emission (AME)

Region	Freq (GHz)	Polarization (%)	Reference
Perseus (COSMOSOMAS)	11–17	<1.0	Battistelli et al. (2006), ApJ, 645, L141
Perseus (QUIJOTE)	11–19	<0.22	Génova-Santos et al. (2015), MNRAS, 452, 4169
Taurus (QUIJOTE)	11–19	<0.39	Poidevin et al. (2019), MNRAS, 487, 1729
Rho Ophiuchi (Planck)	30	<1.6	Planck Collaboration (2016), A&A, 594, A10
W43 (QUIJOTE)	11–19	<0.09	Génova-Santos et al. (2017), MNRAS, 464, 4107

Upper limits on the polarization of the Anomalous Microwave Emission in rho Oph p<0.28%

Gonzalez-Gonzalez et al. 2025 Astron. Astrophys 695, 245

5.2 Anomalous Microwave Emission (AME)

- Key Goals:

 - Evaluate AME contamination for CMB B-mode searches.

6. New developments: **QUIJOTE and STRIP telescopes at** Teide Observatory (10-90 GHz)

5.0

0.0

5.0

2.5

0.0

GLatitude (deg) 2.5

GLatitude (deg)

Render for STRIP (Paonessa et al. 2025, JINST subm)

Elevation Yoke

Elevation Gaarbox Asserticity

Adventh Fork

Notor Bectronics Cablenat

> Cold head Compresso

equivalent 2 μ K.arcmin @ 100 GHz with β = -3

Experimental Perspectives 10-90 GHz Teide Obs.

QUIJOTE: MFI, TFGI, NGI+ STRIP 40 GHz

Ninety-GHz instrument (NGI)

• 90-GHz instrument for the QUIJOTE telescope 2

- Scientific collaboration: two QUIJOTE nodes (IAC, IFCA) and University of Rome La Sapienza and Univ. Tokyo
- Baseline design based on MISTRAL@SRT (Paiella et al. 2022)
 - Cryostat: pulse-tube refrigerator combined with an absorption refrigerator to reach a final temperature of 150 mK
 - Polarization modulation unit: Ø 60-cm HWP coupled to a rotation unit based on magnetic levitation
 - Detectors: 350 KIDs with dual polarization at 150 mK
- Scientific goals:
 - Survey of 3,000 deg² down to a sensitivity of 6 μK·arcmin
 - Survey of synchrotron regions to sensitivity of 2 μK·arcmin
 - Comparable sensitivity to synchrotron to the QUIJOTE/MFI2 (10-20 GHz) and the TFGI (30-40 GHz)
 - Constrain the frequency dependence of the spectral index of polarized synchrotron
- Status:
 - Conceptual design finished
 - Call for tender for the detailed design and fabrication of the cryostat and cold structure to be opened in June/July

Conclusions

- Need to provide the best possible characterization of the physical properties of the polarized emissions in the 5-90 GHz range
- Establish the statistical Properties of Polarized Synchrotron and the Magnetic Field of our Galaxy
- Understand the physics of the Anomalous Microwave Emission in different environments and angular scales and determine its polarization properties
- The coming years will also focus on improving statistical models, integrating cross-tracer data, and supporting upcoming missions like LiteBIRD, Simons Observatory and CMB-S4.

Thanks