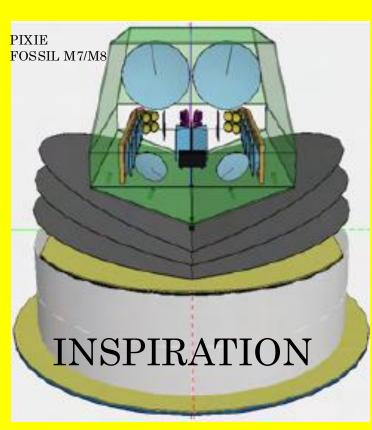
ACADEMIA DELLE SCIENZE DI TORINO

CMB@60 28-30 May 2025

CMB-SD Fourier Transform Spectroscopy: by SIMBAD*on the Moon!


Spectroscopic Interferometer for Microwave BAckground Distortions

Jean-Pierre Maillard and Joseph Silk,

Institut d'Astrophysique de Paris

THE CMB SPECTRUM consider the Moon!

Options: ESA L6 or with NASA/ESA ARTEMIS?

ESA large missions L1 Juice 2023 L2 Athena 2037 L3 LISA 2035 L4 Icy Moons. 2045? L5 Exoplanets/MWG 2055? L6 Early universe. 2065? NASA flagship missions JWST 2021 Roman ST 2027 HWO 2041 ?

NASA lunar landing crewed missions

Artemis III 2027 Artemis IV 2028 Artemis V 2030 Artemis VI 2031 Artemis VII 2032

China lunar landing missions Long March 10, 2030

Unique far-IR advantages of lunar polar sites

 > Space conditions = access to all the electromagnetic spectrum
 > Passive cooling of the telescopes at 26 K = better than at L2 (45 K for JWST) → main parasitic flux beyond ≈ 45 µm

ORIGIN of the CMB LUNAR PROJECT

> Discussion meeting of Royal Society in London (18-19 March 2020) organised by Joe Silk *et al.*

Astronomy from the Moon: the next decades

> There, J-P Maillard asked the question:

Is the Moon the future of infrared astronomy? Next decade: CMB spectroscopy y, μ + H/He recombination lines

array of four fixed 1.5-m telescopes feeding FSS detector in a permanently cold, polar lunar crater

(Mallard 2024)

Beyond 2050:

high-resolution imaging: *100-m multi-mirror steerable telescope*

- minimum flexures due to low lunar gravity
- spectral range: 0.1 to $\sim 200 \ \mu m$

ultimate interferometry: km crater-spanning telescope array

μsec optical/IR imaging
 (Labeyrie 2024)

	Design	Gain facto
Dedicated mission	no polarimetry	G = 2
Add detectors	1 to 16-100	G=4-10
Telescope size	from 0.55m to 1-5m	G = 2 - 10
reduce bandwidth ease observed sky fraction	from 2THz to 30GHz	G=1.5 G=1.5
ease observed sky fraction	to $f_{sky} = 0.7$	0 = 1.5
	container section Moving	mirror Entrance collimator
	CMIB-SD IF IS	
IFŢS	LAYOUT	
Focal Flat mirror plane		
flat mirror plane	Entrance collimator	∧ i ∧ ∧ i ≯
	Dia 35 cm	(/ ∖;/ ∖ X // ;/ ⊫
	Blackbody	━━━━━━━━━━━━━━━━━====================
	temp. feed horns	
	splitter 2.73 K	
	5 cm 2-position	Height
	flat mirror on	
Off-axis 70 cm	both faces	Entrance collimator
	E1 – BB, Wire-grid	Wire-grid 45° ent
primary mirror E2		
primary mirror	E2 - BB beamsplitter	heamenlitter
primary mirror	E2 - BB beamsplitter 50 cm diameter Note: telescope pupil imaged on the beam	beamsplitter mirr

SIMBAD optical layout

multi- SIMBAD on the Moon

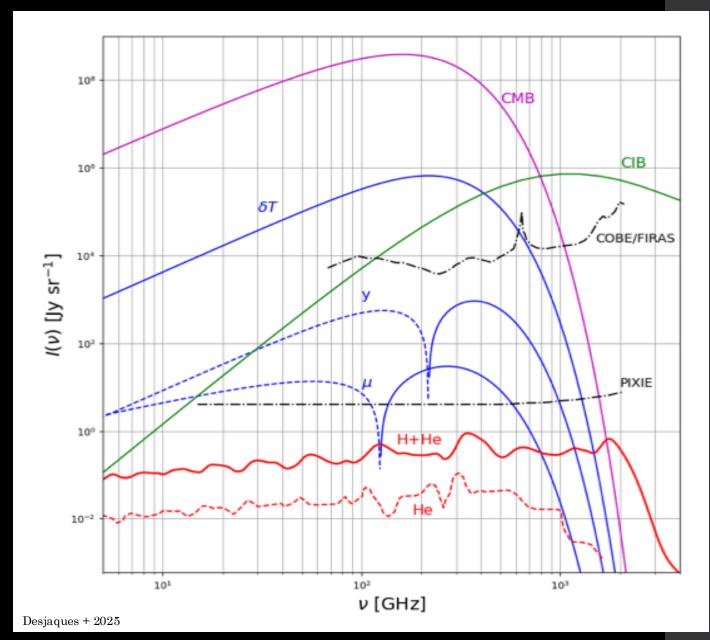
- Optimal design: 4 x1.5m SIMBAD modules set in a permanently cold polar lunar crater
- continuous data acquisition on full rings on the sky by using rotation of the Moon
- each unit equipped with an Imaging Fourier Transform Spectrometer (IFTS) cryocooled to 2.5 K covering 90 - 2000 GHz

challenges

- \checkmark availability of launching vehicle with 8 m diameter $% \left({{{\rm{internal}}} \right)$ internal fairing
- ✓ lunar rover near landing site
- \checkmark solar panels on crater rim to provide power to each SIMBAD unit
- \checkmark no schedule for this program
- \checkmark requires preservation of a PSC for science

multiSIMBAD on the Moon vs a cosmological mission at L2

 ✓ a permanently cold environment (26 K) in a selected polar lunar crater → passive cooling better than at L2

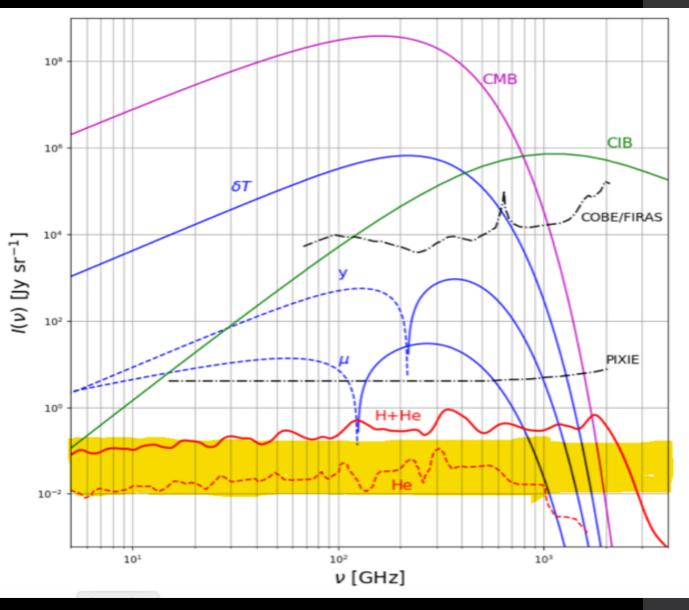

- ✓no need of a propellant system for maintenance at a L2 halo
 orbit → other saving = no limit of duration
- \checkmark development of identical units \rightarrow minimum time increase
- ✓ up to 4 modules = multi-SIMBAD in a single launch

SLS New Glenn Saturn V Starship N1 Long March 9 Internal fairing up to 9 m diameter 20 m height Payload to translunar injection > 40 tons

Launch cost \$4b (SLS) \$100m (Starship) *Development* \$25b \$5b

SENSITIVITY TO SPECTRAL DISTORTIONS

Holy grail!


SENSITIVITY TO SPECTRAL DISTORTIONS

VOYAGE 2050 (~2065)

or

MULTISIMBAD

(via ARTEMIS ~ now??)

Helium recombination lines are ultimate goal!

CONCLUSION

Moon is a promising site for infrared astronomy in the next decades

especially for spectroscopy of the CMB with MULTI-SIMBAD!