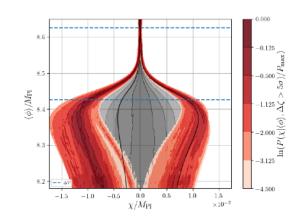

GRF from V0 scaling $\sqrt{r} \sim 4 \sqrt{\epsilon}0$ uncorrelated


pinG from ΔV

scaling ~1/100

οğ correlated

GRF controlled by ε0 *cf* pinG controlled by instability strength

strong frozen pinG GW enter horizon then stream to a stochastic background, "tunable" GW frequency < 30 GHz, down to ~ 10^{-20} Hz ζ_0 (CMB) ~ $10^{-4.3}$

PBH target is $\Delta \zeta > .01$ to .1

pinGponGs less radical than PBHs, ^{-⁴}which are super-strain ponGs, -⁰clustered ponGs near proto-PBHs

 $\Delta \zeta >1$: diffusion > drift => coherent Hc emerge from $\Delta \zeta < 1$ bond@75 likes cmb@75, Gamow theory cf. Penzias Wilson and Dicke, Wilkinson + expt

pinGponG ζ + *GW*

via instabilities, strained fields + hysteresis

emergence from fluctuation dominance via instability coherent H_c where ζ < 1

XYZ are ongoing unstable gravitational collapse is k_xk_yk_z instability => BH

just as cosmic web of XYZ in various components, DM, B, v, γ

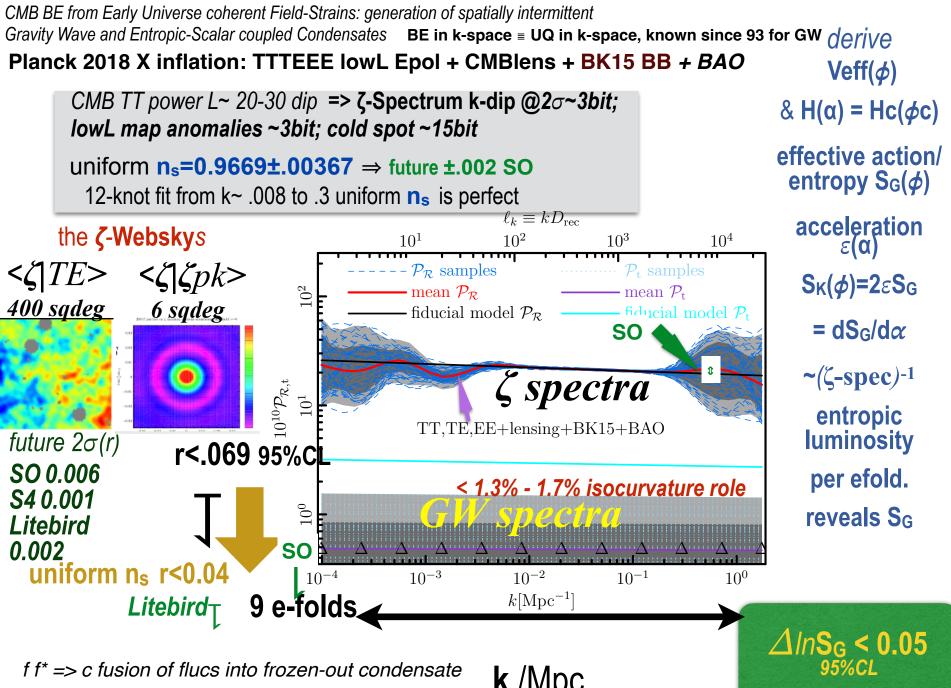
so cosmic superweb in XYZ, inflaton, & transverse field degrees of freedom aka other dimensions =? 11D Sugra ~ string theory

my favourite Planck figures: quadratic power maps for ζ_0 h^(TT) isocons linear ζ_0 Wiener maps + flucs from CMB T,E

+ current & projected landscapes SO, Litebird, S4 for $\zeta_0 h^{(TT)}$

general: full differential lattice field simulations, can be fully encoded in stochastic framework $\phi = \phi c + \phi f$, communicate across $k_c(x_c) = Hc(\phi_c)$, general inflaton and isocon and TT strain (aka gravity wave) fields

$d\boldsymbol{\zeta} = -d\boldsymbol{\alpha} \left(\varepsilon - \varepsilon_{c} \right) / \varepsilon_{c} = \operatorname{sqrt}(d\sigma^{2} z_{\zeta}) \operatorname{GRD}_{\overset{\sim}{H_{c}}/M_{P}} dh^{TT} = \operatorname{sqrt}(d\sigma^{2} hh) \operatorname{GRD}$

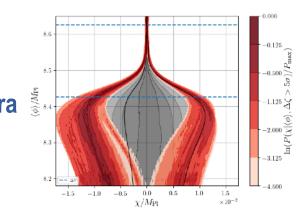

f + f* => c fusion of fluctuations into frozen-out condensate k< $k_c(x_c)$ = BEC Jeans instability *c-instability* $m_{\phi\phi}^2 < 0$ *c* + *c** fission of the *c*-

trajectories,

elastic stretching and relaxation, inelastic creates $d\zeta/d\alpha$

via flow from action to entropy ~2/M_P² Green-fn * Π^{TT} (constrained)

 $h^{TT} = h^{TT}$ (free) + h^{TT} (constrained)



k /Mpc

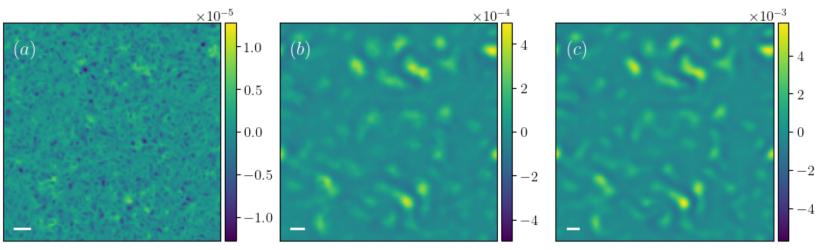
over 10 efold CMB range

field strains n=dof+4 *Cf* space strains, time strains S_G(*E*AB,HAB) ~ sugra

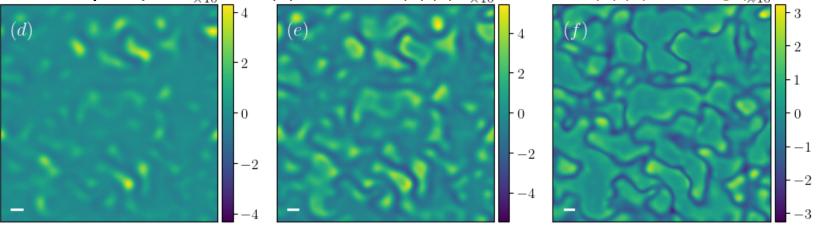
 $\mathcal{E}\phi^{A}\phi^{B}$ generally A,B =TXYZ $\phi,\chi,...$ inflaton strain ln $\phi(t)/\phi(ti) = \mathcal{E}\phi\phi$ transverse field strain ln $\chi(t)/\chi(ti) = \mathcal{E}\chi\chi$ \mathcal{E}_{AB} , dual K_{AB} = $d\mathcal{E}_{AB}/\mathcal{D}dt = H_{AB}/\mathcal{D}$

 $dH_{\phi\phi}/dt + H_{\phi\phi}^2 + TrHxx H_{\phi\phi} = -\tau_{\phi\phi} + c^2 \Delta \mathcal{E}_{\phi\phi} + c^2 \nabla \mathcal{E}_{\phi\phi} \nabla \mathcal{E}_{\phi\phi}$ the (effective potential) tide $\tau_{\phi\phi}$ is $m^2_{\phi\phi}$

GRAVITY WAVES $dH^{TT}_{XX}/dt + TrH_{XX} H^{TT}_{XX} - C_s^2 \Delta \varepsilon^{TT}_{XX} = -\tau_G^{TT}$

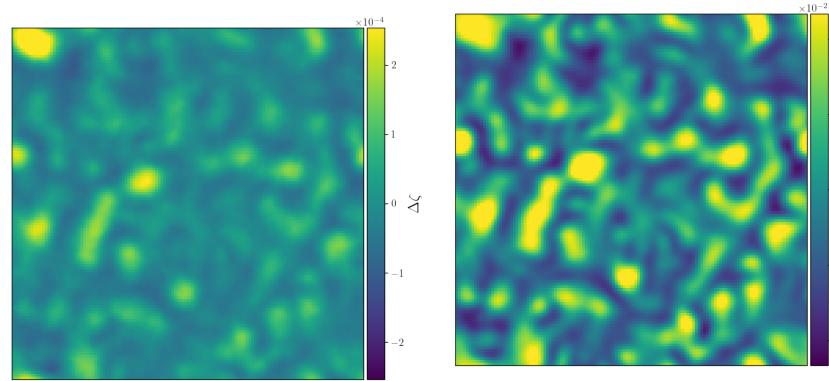

 $dH_{XX}/dt + H_{XX}^2 = -\tau_{GXX} + c_s^2 \Delta \varepsilon_{XX} + ..$ is the homogeneous ellipsoid acceleration equation τ_{GXX} is the usual tide $\nabla \nabla \Phi_N$

~ Raychaudhuri eqn

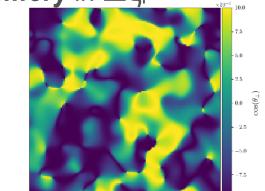

Lyapunov if $H_{AB} > 0$ instability, eg XYZ damping if $H_{AB} < 0$ eg k_c oscillation if $-i\omega_{AB} = H_{AB}$ varieties of pinGs, depends upon instability wavenumber k_p instability strength m² <0 duration

we chose a symmetry breaking S_{Gc} Higgs-like (+-) also tried string-like (0,2π) + many different potentials pinGponG results are generic

$\zeta_{f}(x \mid \Delta V + V_{0}; Bunch-Davies GRF \mid C) = \Delta \zeta_{f} + \zeta_{f}(x \mid V_{0}; BD GRF \mid C)$



 $\mathbf{m}_{\perp \perp}^2 < 0: \Delta \zeta_f$ sequence: <= (a) weak to (b)(c) medium to (d)(e) strong (f) =>



domain wall memory in $\Delta \zeta_{f}$

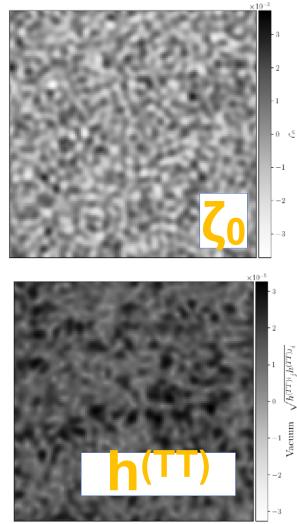
$\zeta_{f}(x \mid \Delta V + V_{0}; Bunch-Davies GRF IC) = \Delta \zeta_{f} + \zeta_{f}(x \mid V_{0}; BD GRF IC)$

string memory in $\Delta \zeta_{f}$

-1.0

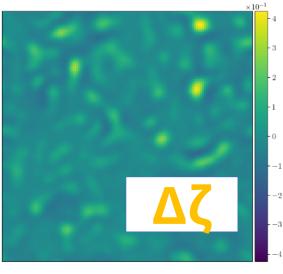
- 0.5

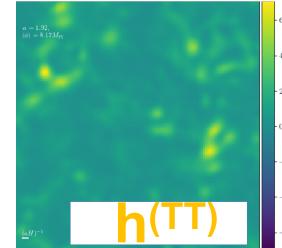
Ď 0.0 -


-0.5

-1.0

 $m_{\perp \perp}^2 < 0: \Delta \zeta_f$ sequence: medium to strong =>


GRF from V0


scaling $\sqrt{r} \sim 4 \sqrt{\epsilon}0$

pinG from ΔV

scaling ~1/100

GRF controlled by ε0 cf pinG controlled by instability strength

strong frozen pinG GW enter horizon then stream to a stochastic background, "tunable" GW frequency < 30 GHz, down to ~ 10^{-20} Hz

appinGponGs less radical than PBHs, approximation which are super-strain ponGs, extreme tail modifications of Veff?


PBH target is $\Delta \zeta > .01$ to .1

 $\Delta \zeta > 1$ is (semi-) eternal inflation

pinGponG GW correlated with pinGponG ζ
instability TT amplifies anisotropic stress
 source for GW. 2 stages,
 during inflation propagation from Π^{TT}
 late times further propagation
 => overlap of the GW sources
 ~ stochastic background

complete reconstruction of *Π*^{TT} & **h**^{TT} from **ζ**

frozen h^{TT} re-enter horizon => flow to GW ping overlap, stochastic GW - enough overlap tends to Gaussian

frozen h^{TT} re-enter horizon flow to GW ping overlap, stochastic GW enough overlap tends to Gaussian

-2

ν

finally after 15 years, 5 papers in next few months, 0a,0b (90s + recent) bond on general stochastic morrison thesis work with bond+braden

paper 0: bond, stochastic framework, emergence of Signal (c) from Noise (f), coherent from incoherent, ph condensate defines coherence. kc(xc), boundary between kL and ks aka kf

paper 1: morrison, bond, braden 24 pinGs methods and relation to stochastic inflation paper 2: morrison, bond, braden 24 pinGs as source population

 $\zeta(x,t) \sim \int \Delta \zeta n G$ -Prominences(x-x_c) $dN_{c}(x_{c}R_{c})$ + Gaussian random ζ -flucs

paper 3: morrison, bond, braden 24 pinGs as functions of strained transverse gaussian field

 $\zeta(\underline{x},\underline{t}) \sim \sum_{p} \Delta \zeta_n G(\underline{x}_p(\underline{x}, \underline{a}_e)) + Gaussian random \zeta_flucs, \qquad \underline{x}_p(\underline{x}, \underline{a}_e) = Gaussian random$ paper 4: morrison, bond, braden 24 nonGaussian Gravity Waves from transverse traceless pinGs

clustered pinGponG sources are generic
{kp} could be anywhere & everywhere
at low L, relation to anomalies? GW: correlated QU aka BE
stochasticity depends on degree of wave propagation inside horizon
can be strong in the 50 e-folds below the CMB-LSS regime,
from k~ 1/Mpc down to k~ 1/cm,
e.g., modifying galaxy formation intermittently, seeds for PBH, VMBH, SMBH.
JWST issues, weak constraint from first stars